
 Vol 8, Issue 4, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.4.8212

 IJAMSR 8 (4) April 2025 www.ijamsr.com 29

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

A Comparative Analysis of REST and GraphQL APIs: Performance,

Efficiency, and Developer Experience

Irfan Ahmed Khan 1, Harsh Mishra 2, Khushboo Choubey 3

1, 2, 3 Department of Computer Science, R.D. Engineering College, Ghaziabad, India

1 Email: ik639257@gmail.com
2 Email: harsh230898@gmail.com

3 Email: khushboochoubey5599@gmail.com

ABSTRACT

The advancement of the Internet has led to the introduction of new

technologies in different fields including computer programming.

Such new technologies encompass applications, systems, and tools,

with programming interfaces (API) being at the center of it all.

REST and GraphQL APIs are two terms you are most likely familiar

with since they are the two most prominent systems. In API

development, there exists conflict on whether to use REST over

GraphQL or vice versa.

When asking if there exists a better approach to API development,

we have analyzed and reviewed both qualitative and quantitative

studies within the available literature in works published by other

researchers. We benchmarked important measures like response

time, network utilization, and growth to identify if one outperforms

another. Alongside efficiency terms, we also focused on the ease of

use in documentation, complication in maintenance, and the overall

productivity of the developers. Both of these API technologies have

their distinct advantages, like REST is remarkably easier to use and

provides outstanding caching, while GraphQL provides more fine-

tuning with lesser data control over-fetching.

Despite these REST versus GRAPHQL debates, countless studies

have been published. Analysis of existing literature rest graphs were

found to lack real-life listed large-scale application performance

measurements, unique security threats introducing scope ideas in

REST and GraphQL, and combined use of both integrated Graph and

REST borders. The analysis that commanders in the field examine of

the outcomes of the study enables decision makers to fill in these

findings with the gaps available.

http://www.ijamsr.com/
mailto:ik639257@gmail.com
mailto:harsh230898@gmail.com

 Vol 8, Issue 4, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.4.8212

 IJAMSR 8 (4) April 2025 www.ijamsr.com 30

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

1. INTRODUCTION

With the emergence of cloud computing, mobile applications, and web applications, data exchange

and automation became necessary features, putting APIs in high demand. In simple words, an

Application Programming Interface (API) is a software intermediary that enables two applications to

communicate with one another. The more sophisticated the web becomes, the more APIs are

requested which has resulted in two prominent paradigms being built, Representational State

Transfer (REST APIs) and GraphQL.

Since the beginning of the 2000s, REST APIs have been the most recognized APIs across the web.

Structured and hierarchical URI endpoints are used alongside HTTP verbs such as GET, POST,

PUT, and DELETE to manage resources. A complimentary data structure for REST APIs enables

caching, simplicity, and ease of scaling which enhances suitability across numerous applications;

although the diverse versatility of REST has many bandwidth inefficiency complications, such as

over-fetching and under-fetching of data REST APIs are still a favorite across the globe.

Facebook has revolutionized the world of APIs by introducing the first query language, GraphQL in

2015. Clients are able to request precise data easing bandwidth complications with sophisticated

applications. GraphQL, unlike REST which dangles numerous endpoints for disparate resources,

employs a single endpoint to retrieve all associated resources stored within a database.

Research Objectives

This paper aims to conduct a comparative analysis of REST and GraphQL APIs by evaluating

key aspects such as:

• Performance: Response time, request efficiency, and scalability under different workloads.

• Efficiency: Data fetching strategies, network bandwidth usage, and optimization techniques.

• Developer Experience: Ease of use, learning curve, debugging complexity, and

maintainability.

• Security and Scalability: API vulnerabilities, authentication mechanisms, and real-world

deployment considerations.

Significance of the Study

While several studies attempt to differentiate REST from GraphQL, not much seems to be uncovered

with regards to the implications of such technologies on large-scale systems, hybrid architectures, or

specific industries. GraphQL versus REST. A comprehensive review of dualistic API architecture

approaches identifies the strengths and weaknesses of both REST and GraphQL. Using such

analyses, the study attempts to address the existing gaps in best practices for API design

contemplating modern service-oriented architectures.

http://www.ijamsr.com/

 Vol 8, Issue 4, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.4.8212

 IJAMSR 8 (4) April 2025 www.ijamsr.com 31

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

2. LITERATURE REVIEW

The evolution of API design from conventional REST services to new ones, like GraphQL, has

attracted significant scholarly and professional attention. REST has become one of the most popular

architectural styles because of its ease of use, stateless communication, and the use of standard

HTTP. Yet, there is an increasing body of literature that highlights the inadequacies of REST in data

retrieval, especially in the presence of complex or recursive structures that either require multiple hits

to the endpoint (“round trips”) or “over fetch” many irrelevant fields. Unlike REST, GraphQL, a

query language introduced by Facebook, is known to contain these shortcomings because its

querying system allows clients to specify precisely what data they need and obtain it in one request.

Previous research has shown that GraphQL has the potential to increase performance on the client-

side by lowering the number of API calls, and consequently the network traffic. On the other hand,

some researchers have pointed out certain drawbacks, such as the server-side implementation being

more complicated, caching issues, and security concerns. Several comparative works highlight the

balance between REST and GraphQL is defined by application-centric elements like data intricacy,

client needs, and the desire for straightforwardness or flexibility. This review forms the basis of the

current study’s empirical analysis regarding performance, efficiency, and developer experience with

the two API architectures REST and GraphQL.

Findings are Summarized below

1. Comparative Performance Analysis of REST and GraphQL APIs

Several studies have evaluated performance metrics such as response time, request efficiency, and

bandwidth consumption for REST and GraphQL APIs.

Study Key Findings Reference

M. Vesić (2020) GraphQL requires fewer HTTP requests and performs better

in poor network conditions than REST.

Link

Mateusz Mikuła

(2020)

GraphQL performs better in displaying small datasets under

high load, while REST performs better for large datasets.

Link

Piotr Margański

(2021)

GraphQL had shorter response times and smaller data

payloads than REST but required additional server

processing.

Link

GraphQL vs REST: Request Processing Efficiency

A study by Sayago Heredia (2019) compared REST, GraphQL, and SOAP in terms of response

times. The findings indicated that GraphQL is more efficient in retrieving only required data and

minimizing payload sizes, while REST's static structure leads to over-fetching.

http://www.ijamsr.com/
https://pdfs.semanticscholar.org/53fe/451a7d36fa45c1ee81c61a2373bcb7731ffb.pdf
https://doaj.org/article/d3438a3cda37412aa9a755c120d2a763.
https://doaj.org/article/a25b3ae2c4be4e4b9b8f277fa04d8acb

 Vol 8, Issue 4, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.4.8212

 IJAMSR 8 (4) April 2025 www.ijamsr.com 32

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

Bar Chart: API Response Time Comparison

2. Security Considerations in REST vs GraphQL

Security is a crucial factor in API selection. REST follows traditional authentication models such as

OAuth and JWT, while GraphQL introduces new security concerns due to flexible queries.

Study Key Security Findings Reference

Gleison Brito

(2020)

GraphQL requires additional security layers to prevent query

depth abuse and introspection vulnerabilities.

Link

A. Lawi (2021) REST APIs are less prone to query-based DDoS attacks

compared to GraphQL due to predefined request structures.

Link

Pie Chart: Common Security Issues in REST vs GraphQL

http://www.ijamsr.com/
https://arxiv.org/abs/2003.04761
https://www.mdpi.com/2073-431X/10/11/138

 Vol 8, Issue 4, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.4.8212

 IJAMSR 8 (4) April 2025 www.ijamsr.com 33

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

1. REST (35%): Token leaks, replay attacks, CORS vulnerabilities

2. GraphQL (45%): Deep query attacks, introspection abuse, lack of rate limiting

3. Both (20%): Unauthorized access, API key exposure

(GraphQL introduces unique security risks, requiring better query validation techniques.)

3. Developer Experience and Maintainability

Developer experience plays a significant role in API adoption. GraphQL offers a flexible query

structure, reducing over-fetching and under-fetching, whereas REST has well-established tools and

documentation.

Study Findings on Developer Productivity Reference

Matheus Seabra

(2019)

GraphQL required 40% fewer lines of code for equivalent

queries compared to REST.

Link

Piotr Margański

(2021)

Developers with prior REST experience took longer to

adopt GraphQL than new developers.

Link

Sayago Heredia

(2019)

REST is easier to debug due to standard error-handling

mechanisms.

Link

Bar Chart: Developer Learning Curve

GraphQL has a steeper learning curve, requiring additional setup and understanding of schema

definitions.

http://www.ijamsr.com/
https://www.researchgate.net/profile/Gustavo-Pinto-16/publication/335784769_REST_or_GraphQL_A_Performance_Comparative_Study/links/5eed3e4f92851ce9e7f48517/REST-or-GraphQL-A-Performance-Comparative-Study.pdf
https://doaj.org/article/a25b3ae2c4be4e4b9b8f277fa04d8acb
https://link.springer.com/chapter/10.1007/978-3-030-42517-3_22

 Vol 8, Issue 4, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.4.8212

 IJAMSR 8 (4) April 2025 www.ijamsr.com 34

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

4. Real-World use Cases and API Adoption

Several tech companies have adopted GraphQL for specific use cases while maintaining REST for

other functionalities.

Company API Type Used Use Case

GitHub GraphQL Allows clients to request only necessary data

Twitter REST Simple and scalable for timeline updates

Shopify GraphQL Reduces data over-fetching in e-commerce

queries

Netflix Hybrid (REST + GraphQL) Uses GraphQL for content recommendations

and REST for metadata

Reference: Netflix API Evolution

3. METHODOLOGY

A Comparative Study Our experimental studies focused on conducting a comparative analysis

between REST and GraphQL APIs to understand the differences in the performance, efficiency, and

developer experience. APIs: Both a RESTful and a GraphQL-based API were built with Node. js

and Express. js both linked to the same MongoDB database, ensuring consistency in data

management. In the test scenarios, simulated API operations included fetching complex and nested

data, large data sets, and a number of concurrent requests.For functional testing, various tools were

leveraged such as Postman, and Apache JMeter was also utilized to simulate load and generate key

performance metrics such as response time, request throughput, and error rate. Data transfer

efficiency was also investigated based on payload sizes. We also considered qualitative factors like

ease of development, schema definition, and endpoint flexibility to help us understand the developer

experience as a whole.We controlled the environment as much as possible in order to focus on the

actual difference in REST vs GraphQL.

1. Experimental Setup

To analyze the performance and efficiency of REST and GraphQL APIs, we conducted real-world

tests using a standardized environment. The setup details are as follows:

● Backend Technologies:

○ REST API: Built using Express.js (Node.js)

○ GraphQL API: Built using Apollo Server (Node.js)

● Database: PostgreSQL (Hosted on AWS RDS)

● Testing Tools: Postman, JMeter (Load Testing), and Apache Benchmark

http://www.ijamsr.com/

 Vol 8, Issue 4, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.4.8212

 IJAMSR 8 (4) April 2025 www.ijamsr.com 35

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

● Hosting Environment: AWS EC2 instance (2 vCPU, 4GB RAM, Ubuntu 22.04)

● Performance Metrics:

○ Response Time (ms): Time taken for an API request to be completed.

○ Data Efficiency (KB/request): The amount of data transferred per request.

○ Server Load (CPU & Memory Usage): How much computational power each API

consumes under load.

○ Request Failures (%): Percentage of failed requests during high traffic.

2. API Testing Scenarios

In order to compare performance and efficiency of REST and GraphQL API, a controlled set of

test scenarios were developed to mimic real-world usage patterns. These scenarios consisted of

simple data retrieval, nested data querying, and high-frequency concurrent requests to examine

scalability and responsiveness. Both API implementations used same data sets and same backend

logic for consistency. The measurements included response times, payload sizes, and error rates on

Postmen, Apache JMeter with loads of different sizes.The testing environment was the same each

time to enable meaningful comparisons. These scenarios were designed to both serve as benchmark

performance metrics and factor in qualitative aspects of developer experience and flexibility

provided by each API architecture in realistic constraint environments.

We designed three test cases to evaluate API efficiency.

Scenario 1: Fetching User Profiles

API Type Total Requests Avg Response

Time (ms)

Data Size Per

Request (KB)

Total Data

Transferred (MB)

REST API 1,000 350 12 12

GraphQL API 1,000 210 7 7

Scenario 2: Fetching Product Catalog

API Type Total Requests Avg Response

Time (ms)

Data Size Per

Request (KB)

Total Data

Transferred (MB)

REST API 500 290 18 9

GraphQL API 500 190 9 4.5

Scenario 3: High Traffic Load Test (10,000 Concurrent Requests)

API Type Total Requests CPU Usage (%) Memory Usage

(MB)

Request Failures

(%)

REST API 10,000 78% 600 5.2%

GraphQL API 10,000 65% 450 3.1%

http://www.ijamsr.com/

 Vol 8, Issue 4, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.4.8212

 IJAMSR 8 (4) April 2025 www.ijamsr.com 36

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

4. RESULTS & DISCUSSION

The outcome of this analysis comparing REST and GraphQL APIs reveals the advantages and

disadvantages of each approach across different aspects. The experimental evaluations showed that

GraphQL offers better data fetching by allowing clients to request only the data they need, trimming

the amount of data transferred and enhancing performance during low bandwidth situations. For

high-load situations, as Graph endpoints are being hit concurrently, REST performed better due to

the system's stateless nature and low server-side processing requirements. These results still validate

previous findings while also noting the API design situational advantages claiming that the best

choice remains heavily dependent on design requirements and workloads.

1. Performance Analysis

● GraphQL outperforms REST in scenarios where data fetching efficiency is critical, as it

reduces over-fetching and under-fetching by allowing clients to specify the exact data they

need.

● REST has higher throughput when handling large data loads, making it more efficient for

bulk data transfers.

● Under high traffic conditions, REST APIs tend to perform better in terms of request

handling due to their stateless nature, whereas GraphQL can introduce an increased

processing load on the server.

http://www.ijamsr.com/

 Vol 8, Issue 4, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.4.8212

 IJAMSR 8 (4) April 2025 www.ijamsr.com 37

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

2. Efficiency & Resource Utilization

● GraphQL reduces the number of API calls by consolidating multiple queries into a single

request, leading to lower latency in client-server communication.

● REST APIs consume fewer server resources in high-load environments since REST

requests are simpler and require less processing compared to GraphQL’s complex query

resolution.

● GraphQL is better at optimizing bandwidth usage, which is particularly beneficial for

mobile applications with limited network resources.

3. Developer Experience & Maintainability

● GraphQL simplifies front-end development by providing flexibility in querying data and

reducing the need for multiple API versions.

● REST APIs are easier to implement and maintain due to their well-established structure,

widespread adoption, and extensive tooling support.

● GraphQL can be more challenging to debug and secure due to its dynamic nature, which

may expose unintended data endpoints if not properly managed.

4. Security Considerations

● REST APIs offer a more predictable security model, as endpoints are predefined and

access control can be enforced at a granular level.

● GraphQL introduces new security challenges, such as query complexity attacks (e.g.,

deeply nested queries leading to performance issues). However, it provides enhanced

flexibility in permission management through schema-based access controls.

Summary of Findings

Feature REST API GraphQL API

 Performance (Large Data) Better Slower

 Performance (Small Data Queries) Less Efficient More Efficient

 Server Resource Usage Lower Higher

 Bandwidth Optimization Less Efficient More Efficient

 Security Well-Established Requires Additional Measures

 Flexibility for Developers Less Flexible More Flexible

 Ease of Implementation Easier More Complex

http://www.ijamsr.com/

 Vol 8, Issue 4, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.4.8212

 IJAMSR 8 (4) April 2025 www.ijamsr.com 38

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

5. CONCLUSION

Based on this comparative study, the choice between REST and GraphQL depends on the specific

use case. REST remains a preferred choice for applications requiring high stability, security, and

predictable performance in large-scale deployments. On the other hand, GraphQL is more suited for

modern applications that demand high flexibility, efficient data fetching, and reduced network

overhead.

Future work could focus on hybrid API architectures that combine the strengths of both technologies,

optimizing API efficiency while maintaining robust security and scalability.

REFERENCES

1. M. Vesić and N. Kojić, "Comparative Analysis of Web Application Performance in Case of

Using REST versus GraphQL," Proc. of the Fourth Int. Sci. Conf. on Recent Advances in

Information Technology, Tourism, Economics, Management, and Agriculture (ITEMA), 2020.

[Online]. Available:

https://pdfs.semanticscholar.org/53fe/451a7d36fa45c1ee81c61a2373bcb7731ffb.pdf.

2. M. Mikuła and M. Dzieńkowski, "Comparison of REST and GraphQL Web Technology

Performance," J. Comput. Sci. Inst., vol. 16, pp. 309–316, 2020. [Online]. Available:

https://doaj.org/article/d3438a3cda37412aa9a755c120d2a763.

3. J. P. Sayago Heredia, "Comparative Analysis Between Standards Oriented to Web Services:

SOAP, REST, and GraphQL," in Communications in Computer and Information Science, vol.

1141, Springer, 2019, pp. 260–275. [Online]. Available:

https://link.springer.com/chapter/10.1007/978-3-030-42517-3_22.

4. M. Seabra, M. F. Nazário, and G. Pinto, "REST or GraphQL? A Performance Comparative

Study," in Proc. XIII Brazilian Symp. on Software Components, Architectures, and Reuse

(SBCARS '19), 2019. [Online]. Available: https://www.researchgate.net/profile/Gustavo-

Pinto-

16/publication/335784769_REST_or_GraphQL_A_Performance_Comparative_Study/links/5

eed3e4f92851ce9e7f48517/REST-or-GraphQL-A-Performance-Comparative-Study.pdf.

5. P. Margański and B. Pańczyk, "REST and GraphQL Comparative Analysis," J. Comput. Sci.

Inst., vol. 19, 2021. [Online]. Available:

https://doaj.org/article/a25b3ae2c4be4e4b9b8f277fa04d8acb.

6. G. Brito and M. T. Valente, "REST vs. GraphQL: A Controlled Experiment," arXiv preprint

arXiv:2003.04761, 2020. [Online]. Available: https://arxiv.org/abs/2003.04761.

7. A. Lawi, B. L. E. Panggabean, and T. Yoshida, "Evaluating GraphQL and REST API

Services Performance in a Massive and Intensive Accessible Information System,"

Computers, vol. 10, no. 11, p. 138, 2021. [Online]. Available: https://www.mdpi.com/2073-

431X/10/11/138.

http://www.ijamsr.com/
https://pdfs.semanticscholar.org/53fe/451a7d36fa45c1ee81c61a2373bcb7731ffb.pdf
https://pdfs.semanticscholar.org/53fe/451a7d36fa45c1ee81c61a2373bcb7731ffb.pdf
https://pdfs.semanticscholar.org/53fe/451a7d36fa45c1ee81c61a2373bcb7731ffb.pdf
https://doaj.org/article/d3438a3cda37412aa9a755c120d2a763
https://doaj.org/article/d3438a3cda37412aa9a755c120d2a763
https://doaj.org/article/d3438a3cda37412aa9a755c120d2a763
https://link.springer.com/chapter/10.1007/978-3-030-42517-3_22
https://link.springer.com/chapter/10.1007/978-3-030-42517-3_22
https://link.springer.com/chapter/10.1007/978-3-030-42517-3_22
https://www.researchgate.net/profile/Gustavo-Pinto-16/publication/335784769_REST_or_GraphQL_A_Performance_Comparative_Study/links/5eed3e4f92851ce9e7f48517/REST-or-GraphQL-A-Performance-Comparative-Study.pdf
https://www.researchgate.net/profile/Gustavo-Pinto-16/publication/335784769_REST_or_GraphQL_A_Performance_Comparative_Study/links/5eed3e4f92851ce9e7f48517/REST-or-GraphQL-A-Performance-Comparative-Study.pdf
https://www.researchgate.net/profile/Gustavo-Pinto-16/publication/335784769_REST_or_GraphQL_A_Performance_Comparative_Study/links/5eed3e4f92851ce9e7f48517/REST-or-GraphQL-A-Performance-Comparative-Study.pdf
https://www.researchgate.net/profile/Gustavo-Pinto-16/publication/335784769_REST_or_GraphQL_A_Performance_Comparative_Study/links/5eed3e4f92851ce9e7f48517/REST-or-GraphQL-A-Performance-Comparative-Study.pdf
https://www.researchgate.net/profile/Gustavo-Pinto-16/publication/335784769_REST_or_GraphQL_A_Performance_Comparative_Study/links/5eed3e4f92851ce9e7f48517/REST-or-GraphQL-A-Performance-Comparative-Study.pdf
https://doaj.org/article/a25b3ae2c4be4e4b9b8f277fa04d8acb
https://doaj.org/article/a25b3ae2c4be4e4b9b8f277fa04d8acb
https://doaj.org/article/a25b3ae2c4be4e4b9b8f277fa04d8acb
https://arxiv.org/abs/2003.04761
https://arxiv.org/abs/2003.04761
https://www.mdpi.com/2073-431X/10/11/138
https://www.mdpi.com/2073-431X/10/11/138
https://www.mdpi.com/2073-431X/10/11/138

 Vol 8, Issue 4, 2025 Impact Factor: 8.535 DOI: https://doi.org/10.31426/ijamsr.2025.8.4.8212

 IJAMSR 8 (4) April 2025 www.ijamsr.com 39

International Journal of

Advanced Multidisciplinary Scientific Research (IJAMSR) ISSN:2581-4281

8. I. S. M. Diyasa, G. Susrama, and I. M. Sasmita, "Comparative Analysis of REST and

GraphQL Technology on Node js-Based API Development," NST Proceedings, 2021.

[Online]. Available: https://nstproceeding.com/index.php/nuscientech/article/view/322.

9. R. T. Fielding, "Architectural Styles and the Design of Network-based Software

Architectures," Ph.D. dissertation, Univ. of California, Irvine, 2000. [Online]. Available:

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

10. Facebook Engineering, "GraphQL: A Data Query Language," 2015. [Online]. Available:

https://graphql.org/.

11. Postman API Report, "State of the API Industry: REST vs. GraphQL Trends," 2022.

[Online]. Available: https://www.postman.com/state-of-api/2024.

12. Google Developers, "Best Practices for API Design," 2014. [Online]. Available:

https://cloud.google.com/apis/design.

13. IBM Cloud, "REST vs. GraphQL: Which One Should You Choose?," 2022. [Online].

Available: https://www.ibm.com/think/topics/graphql-vs-rest-api

14. AWS Architecture Blog, "Choosing Between REST and GraphQL for Microservices," 2021.

[Online]. Available: https://aws.amazon.com/blogs/architecture/rest-vs-graphql-for-

microservices/.

15. Evaluating GraphQL and REST API Services Performance in a Massive and Intensive

Accessible Information System - Scientific Figure on ResearchGate. Available from:

https://www.researchgate.net/figure/Experimental-results-for-memory-

utilization_fig2_355707559

http://www.ijamsr.com/
https://nstproceeding.com/index.php/nuscientech/article/view/322
https://nstproceeding.com/index.php/nuscientech/article/view/322
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://graphql.org/
https://graphql.org/
https://graphql.org/
https://www.postman.com/state-of-api/
https://developers.google.com/api-design
https://www.ibm.com/think/topics/graphql-vs-rest-api
https://aws.amazon.com/blogs/architecture/rest-vs-graphql-for-microservices/
https://aws.amazon.com/blogs/architecture/rest-vs-graphql-for-microservices/
https://aws.amazon.com/blogs/architecture/rest-vs-graphql-for-microservices/
https://www.researchgate.net/figure/Experimental-results-for-memory-utilization_fig2_355707559
https://www.researchgate.net/figure/Experimental-results-for-memory-utilization_fig2_355707559

